Решите 2 логорифмических неравенства

Решите 2  логорифмических  неравенства 

 

    log8(x-3)^2<=log81;

    2)

    t1,2=(-1(+-)9)/8

    log8(x-3)^2<=0;

    x-1=2*2^1/4-1;

    x-3>=-1;

  • 1)

    2^(log8(x-3)^2)<=1(2^0);

    2^(log8(x-3)^2)<=3^0;

    2^(log8(x^2-6x+9)<=3^(2logxx^1/2-1);

    x>1;

    log2(x-1)=1;

    4t^2+t-5>0;

    x>=2;

    log2(x-1)=t;

    t1=1, t2=-5/4;

     

    x-1=2 <=> x=3;

    D=1+80=81;

    (x-3)^2<=1;

    log2(x-1)=-5/4;

    4log2^2(x-1)+log2(x-1)-5>0;

    x<=4;

  • x-3<=1;

    log2^2(x-1)^2-log1/2(x-1)>5;